
Solving the N+1 Problem:
or, “A Stitch In Time Saves Nine”

paul-m-jones.com
@pmjones

https://joind.in/15630

http://paul-m-jones.com
https://joind.in/15630

Read These

About Me

• 8 years USAF Intelligence

• BASIC in 1983, PHP since 1999

• Jr. Developer, VP Engineering

• Aura, Radar, Relay, Arbiter

• PHP-FIG: PSR-1, PSR-2, PSR-4

• mlaphp.com

http://mlaphp.com

Overview

• Performance benchmarking

• The N+1 problem

• Native solutions to the N+1 problem

• Libraries to help with the N+1 problem

Performance Benchmarking

Benchmarking Subjects
• CPU

• RAM

• Disk access

• Database access

• Network access

•Requests/second

• Programmer productivity

• Time to initial
implementation

• Time to add new major
feature

• Time to fix bugs

-- numeric measurement --
-- control for variables --

Limitations of Performance

• A man’s got to know his
limitations

• Hardware, OS, web server,
language, framework, app

• Where in the stack to
expend effort?

Performance Measures

• Stock install (Amazon EC2 Large, Ubuntu, Apache, PHP, MySQL)

• Static index.html (Hello World!)

• Dynamic index.php (<?php echo 'Hello World!'; ?>)

• Database connect (mysql_* and PDO code)

• Database connect, query, and fetch (mysql_* and PDO code)

Baseline Performance

5 runs of 10 users for 60 seconds, averaged

relative average
html 1.2514 2726.35
php 1 2178.63

MySQL Connect

$host = 'localhost';  
$user = 'root';  
$pass = 'admin';  
$dbname = 'bench';  
$table = 'hello';  
 
$conn = mysql_connect($host, $user, $pass); 
mysql_select_db($dbname);  
echo "Mysql Connect!";  

PDO Connect

$host = 'localhost';  
$user = 'root';  
$pass = 'admin';  
$dbname = 'bench';  
$table = 'hello';  
 
$pdo = new PDO(
 "mysql:host=$host;dbname=$dbname",
 $user,
 $pass
);
 
echo "PDO Connect!";  

Connection Performance
MySQL relative average
html 1.2514 2726.35
php 1 2178.63
connect 0.7926 1726.81

PDO relative average
html 1.2514 2726.35
php 1 2178.63
connect 0.8346 1818.3

Database Table
CREATE TABLE hello (
 id INT PRIMARY KEY AUTO_INCREMENT,
 ch VARCHAR(1)
);  
INSERT INTO hello (ch) VALUES ('H'); 
INSERT INTO hello (ch) VALUES ('e'); 
INSERT INTO hello (ch) VALUES ('l'); 
INSERT INTO hello (ch) VALUES ('l'); 
INSERT INTO hello (ch) VALUES ('o'); 
INSERT INTO hello (ch) VALUES (' '); 
INSERT INTO hello (ch) VALUES ('W'); 
INSERT INTO hello (ch) VALUES ('o'); 
INSERT INTO hello (ch) VALUES ('r'); 
INSERT INTO hello (ch) VALUES ('l'); 
INSERT INTO hello (ch) VALUES ('d'); 
INSERT INTO hello (ch) VALUES ('!'); 

MySQL Query & Fetch

$conn = mysql_connect($host, $user, $pass); 
mysql_select_db($dbname);
 
$rows = mysql_query("SELECT * FROM $table ORDER BY id"); 
while ($row = mysql_fetch_array($rows, MYSQL_ASSOC)) { 
 echo $row['ch'];  
}  

PDO Query & Fetch
$pdo = new PDO( 
 "mysql:host=$host;dbname=$dbname",
 $user,
 $pass
);
 
$stmt = $pdo->prepare("SELECT * FROM $table ORDER BY id");  
$stmt->execute();
 
$rows = $stmt->fetchAll(PDO::FETCH_ASSOC);  
foreach ($rows as $row) { 
 echo $row['ch'];  
}  

Connect, Query, Fetch Performance
MySQL relative average
html 1.2514 2726.35
php 1 2178.63
connect 0.7926 1726.81
connect, query, fetch 0.6907 1504.76

PDO relative average
html 1.2514 2726.35
php 1 2178.63
connect 0.8346 1818.3
connect, query, fetch 0.7397 1611.61

Overall Performance

html

php

connect

query, fetch

0 700 1400 2100 2800

mysql pdo

The N+1 Problem

Background

• Performance problems in application report

• 2m rows into 40k record objects, 3+ hours

• Reduced dataset to 2000 rows and 40 record objects

• Profiler: 201 queries

• 1 query, plus 5 additional queries per record

N+1 in PHP
// 1 query to get 10 posts 
$stmt = 'SELECT * FROM posts LIMIT 10';  
$posts = $sql->fetchAll($stmt); 
 
// 10 queries for comments (1 per post) 
$stmt = 'SELECT * FROM comments WHERE post_id = ?';  
foreach ($posts as &$post) { 
 $bind = array($post['id']);  
 $rows = $sql->fetchAll($stmt, $bind); 
 $post['comments'] = $rows;  
}  

$posts = array( 
 0 => array( 
 'id' => '1',  
 'body' => 'Post text',  
 'comments' => array( 
 0 => array( 
 'id' => '1',  
 'post_id' => '1',  
 'body' => 'Comment 1 text' 
), 
 // ... 
 9 => array( 
 'id' => '9',  
 'post_id' => '1',  
 'body' => 'Comment 10 text' 
), 
), 
), 
 // ... 
 9 => array(...),  
);  

Why It’s A Problem

• Each relationship is one extra query per master row

• 5 relationships == 5 queries per master row

• 10 records means 50 added queries

• 40,000 records means 200,000 added queries

• Performance drag. Need to use fewer queries.

Why Does N+1 Happen?

CRUDdy Mindset

• Create, read, update, delete

• Record-oriented focus

• ActiveRecord, RowDataGateway

• Collections are secondary

• In a hurry? Treat collection as a series of single records in a loop

BREAD Instead

• Browse, read, edit, add, delete

• “Browse” is a first-class requirement

• TableModule, TableDataGateway

• Build collections of records right away

• Efficient collection building lends itself to efficient record building

Single-Query Solution

Single Query: Intro

• Select all results, including relationships, in a single query

• Loop through results to marshal into domain objects

Single Query: One-to-One
// one-to-one 
$stmt = 'SELECT posts.*, stats.hit_count FROM posts 
 LEFT JOIN stats ON stats.post_id = posts.id 
 LIMIT 10';  
 
$rows = $sql->fetchAll($stmt);  
$posts = array(); 
foreach ($rows as $post) { 
 $post['stats']['hit_count'] = $post['hit_count'];  
 unset($post['hit_count']);  
 $posts[] = $post;  
}  

Single Query: One-to-Many

$stmt = 'SELECT posts.*, comments.* FROM posts 
 LEFT JOIN comments ON comments.post_id = posts.id';  
 
$rows = $sql->fetchAll($stmt);  
 
// posts.id posts.author_id posts.title comments.id comments.body 
// 1 3 Frist Psot! 1 Initial comment 
// 1 3 Frist Psot! 2 Another comment 
// 1 3 Frist Psot! 3 Third comment 
// 1 3 Frist Psot! 4 Oh come on 
// 2 5 Second post 5 1st comment on post 2 
// 2 5 Second post 6 2nd comment on post 2 
// 2 5 Second post 7 3rd comment on post 2 

Single Query: One-to-Many
$posts = array(); 
foreach ($rows as $row) { 
 $post_id = $row['posts.id'];  
  
 if (! isset($posts[$post_id])) { 
 $posts[$post_id] = array( 
 'id' => $row['posts.id'],  
 'title' => $row['posts.title'], 
); 
 } 
  
 $posts[$post_id]['comments'][] = array( 
 'id' => $row['comments.id'], 
 'body' => $row['comments.body'], 
); 
}

Single Query: Review

• Loop through result set to marshal into domain objects

• Fine when you have only “to-one” relationships

• “To-many” relationships introduce complexity (esp. more than one)

• Result set is larger and more repetitive

• Less efficient to marshal

• Difficult to LIMIT/OFFSET

Query-and-Stitch Solution

Query-and-Stitch: Intro

• One query for the master set

• Loop through master set to key on identity field

• One query for related set, against all rows in master set

• Loop through related set and stitch into master set

Query-and-Stitch: Master Set
// 1 query to get 10 posts. 
$stmt = 'SELECT * FROM posts LIMIT 10';  
$rows = $sql->fetchAll($stmt);  
 
// Find the ID of each the post 
// and key the $posts array on them. 
$posts = array(); 
foreach ($rows as $post) { 
 $id = $post['id'];  
 $posts[$id] = $post;  
}  

Query-and-Stitch: Related Set
// 1 query to get all comments for all posts at once. 
$stmt = 'SELECT * FROM comments 
 WHERE post_id IN (:post_ids)';  
$bind = array('post_ids' => array_keys($posts)); 
$rows = $sql->fetchAll($stmt, $bind);  
 
// Stitch into posts. 
foreach ($rows as $comment) { 
 $id = $comment['post_id'];  
 $posts[$id]['comments'][] = $comment;  
}  

Query-and-Stitch: Review

• One added loop (stitching into master set) but 9 fewer queries

• Best for “to-many” relationships but works for “to-one” as well

• Easy to do LIMIT/OFFSET

• Easy to add multiple related sets

• One query to get results

• One loop to stitch into master set

Query-and-Stitch: Performance

• 40k records from 2m rows (5 relationships)

• From 200,001 queries to 6 (1 master, 5 related)

• From 3+ hours to ~5 minutes

Automating Query-and-Stitch

ORM

• Query-and-stitch is used by many (most? all?) ORMs for eager-fetch

• ORMs are disliked by a non-trivial set of developers

• Overhead of including and learning the ORM system

• Non- or pseudo-SQL query construction, hard to hand-tune

• Opaque behavior, ineffective/unpredictable in edge cases, resource hog

• Lazy loading of individual results will reintroduce N+1

Aura.Marshal: Intro

• The problem is not SQL

• The problem is marshaling result sets into domain objects

• Aura.Marshal handles only marshaling, not queries

• Specify types and relationship fields

• Load types with results from your own queries

• Wires up the results into domain objects on fetch

Aura.Marshal: Types
$manager->setType('posts', array( 
 'identity_field' => 'id',  
 'relation_names' => array( 
 'comments' => array( 
 'relationship' => 'has_many',  
 'native_field' => 'id',  
 'foreign_field' => 'post_id' 
), 
), 
)); 
 
$manager->setType('comments', array( 
 'identity_field' => 'id',  
 'relation_names' => array( 
 'post' => array( 
 'foreign_type' => 'posts',  
 'relationship' => 'belongs_to',  
 'native_field' => 'post_id',  
 'foreign_field' => 'id' 
), 
), 
));

Aura.Marshal: Loading

// load posts and get back IDs 
$stmt = 'SELECT * FROM posts LIMIT 10';  
$result = $sql->fetchAll($stmt); 
$post_ids = $manager->posts->load($result);  
 
// load comments for posts 
$stmt = 'SELECT * FROM comments 
 WHERE post_id IN (:post_ids)';  
$bind = array('post_ids' => $post_ids); 
$result = $sql->fetchAll($stmt, $bind); 
$manager->comments->load($result);

Aura.Marshal: Retrieval

foreach ($manager->posts as $post) { 
 echo 'Post titled ' . $post->title 
 . 'has ' . count($post->comments)  
 . '.' . PHP_EOL;  
}  

Conclusion

Conclusion

• Performance benchmarking

• Example of N+1 in PHP

• Mindset: CRUD vs BREAD

• Solutions: single query, query-and-stitch

• Aura.Marshal package as one way of automating 

leanpub.com/sn1php

paul-m-jones.com
@pmjones

https://joind.in/15630

Thanks!

http://leanpub.com/sn1php
http://paul-m-jones.com
https://joind.in/15630

