
Estimating and Expectations

Paul M. Jones
paul-m-jones.com

http://paul-m-jones.com

Read These

About Me

• Developer, Senior Dev, Team
Lead, Architect, VP Engineering

• Military, education, non-profit,
startups, products, consulting

• Local and remote, large projects 
and small ones

• SpikeTV, MTV, Facebook,
Microsoft, Apple, etc.

Part 1:
Everybody’s Story

A New Project

• Client/internal customer approaches you

• Has a textual narrative requirements document

• Possibly has an external reference system: “just like Facebook”

Budget and Deadline

• Typically has a certain budget determined in advance

• Typically has a particular deadline in mind. “Or else ...”

• “... we lose a deal.”

• “... we miss a trade show.”

• “... a competitor beats us.”

Due Diligence

• Sit down and talk with client

• Elicit functionality

• Elicit business processes

Functionality, Milestones, Contract

• Talks result in a functionality list

• Perhaps also a milestone list

• You convince yourself that the budget and deadline are fair

• You convince the client and make the sale

Rationalization

• Maybe the deadline is a *little* tight

• Maybe the functionality is a *bit* too extensive

• “Work late nights or weekends as needed to make up.”

• “We’re committed to the project! We can make it happen!”

• “The only limit is ourselves!”

The Project Begins ...

• 3-month project, first 2 weeks go OK

• Environment setup

• System basics

• Early functionality

... To Take Longer Than It “Should”

• Random/personal events

• Technical difficulties

• Client-related issues

Random/Personal Events

• Sickness (self, spouse, kids)

• Emergency leave

• Car trouble

• Weather

Technical Difficulties

• Recompile extensions

• Pick a new library/framework/etc

• External service troubles/failure

• Environment craps out (e.g., HD failure)

• Dropped laptop, spilled coffee, etc.

Client-Related Issues

• Detail disconnects

• Modified functionality

• Added functionality 
(“but it’s implied!”)

• Redone work

• More meetings

• System is *much* more
complex than

Heroic Measures

• Work weekends like normal days

• Work longer days

• Delegate by expertise

• Add developers/outsource

Difficult Conversations

• Explain to client why schedule is slipping

• Maybe reduce minor functionality

• Still need it after the deadline, though

Late. Late. Late.

• 3 month project is taking 4 months or longer.

• Fixed price? Working at reduced margins.

• Best case: get it all done, just late.

• Common case: finish with reduced scope, quality, and morale.

• Worst case: fired.

Another New Project

• “This time we’ll do better!”

• “We learned so much on the last project!”

• ... but different things go wrong.

There Is A Better Way

Part 2:
Laws

Laws

• Jones’ Law

• Hofstadter’s Law

• Brooks’ Law

Jones’ Law

• “If you plan for the worst, then all surprises are good surprises.”

• Developers are insufficiently pessimistic.

• They are surprised when things go wrong.

• Cure: Expect for things to go wrong, and plan for it.

• Eventually you can calibrate more accurately what the “worst” will be.

Hofstadter’s Law

• “It always takes longer than you expect, even when you take into
account Hofstadter's Law.”

• There will always be unexpected occurrences.

• “Then what good is it to make plans at all?”

• “Plans are nothing, but planning is everything.”

Brooks’ Law

• “Adding manpower to a late software project makes it later.”

• Software development is a knowledge profession. Knowledge has to be
communicated and shared.

• Organizational differences: going from 2 developers to 4 or 6 means
different management approaches

• Training time means at least one productive developer is lost while
training and helping new developers

Effort vs Communication
• Available effort increases linearly,  
but communication increases exponentially.

Partitioning is Key

• For a task that cannot be
partitioned, no matter how
many people you add, you will
never cut development time in
half.

• The key is to be able to
partition into independent
tasks that can function
separately and be integrated

Schedule vs Persons, Single Task

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10

Worker Pairs

• The biggest gain is to add one programmer (from 100% of remaining
schedule to 75% of remaining schedule, given perfect knowledge)

• But don’t add at the end; add at the beginning, once you have a good
estimate.

Part 3:
Planning and Estimating

Estimates, Targets, Commitments

• Estimate: a prediction about cost or schedule

• Target: a desirable business objective

• Commitment: a promise to deliver by a certain date

• A “plan to commit to a target” is *not* the same thing as an “estimate”

• An estimate can tell you if a target commitment is realistic

You Are Terrible At Estimating

• Give a low value and a high value so that the true answer is 90% certain
to fall in that range.

• “What is the surface temperature of the sun?”

• “What year was Alexander the Great born?”

• “What was the weight of the heaviest blue whale ever recorded?”

You Are Terrible At Estimating

• Sun: 10,000 deg F (6,000 deg C)

• Alexander: 356 BC

• Whale: 386,000 lbs/190 English tons (170,000 kg/170 metric tons)

• Even on questions of fact, estimating is difficult. How much more difficult
is it for software development?

Estimating is Hard

• We want to “look smart” and that gets in the way.

• We are unwilling to say “I don’t know” because we want to look smart.

• We are over-optimistic because we believe we are smart.

• Too easy to let political/managerial/social considerations get in the way.

Knowledge Is Paramount

• It’s not enough to be smart; you have to actually know things.

• It’s not enough to be a good programmer; you have to know what the
client’s business needs are.

• It’s not enough to have good judgment; it’s much better to be able to
count.

• More knowledge about the project means a better estimate.

Getting Project Knowledge

• One way to gain knowledge about a project is to do the same one over
and over ... but that never happens

• Another way is to do similar projects over and over, and that happens
often in some kinds of work.

• Most commonly the project is mostly-new (to you). The best way to get
knowledge is...

Design First

• Textual narratives are not enough.

• Design the project screens/pages first, before building an estimate.

• These need not be pixel-perfect. Wireframes/mocks are sufficient.

• Every form, every link, every interaction.

• From this will rise everything else you need to know about the project.

Objections

• “This is waterfall! This is big-bang design up front! Waterfall is bad!”

• “That's going to take too much time!”

• “We have to show the client something useful quickly!”

• “That's really expensive!”

Estimation Technique Guidelines

• Broad/coarse techniques are just as good as fine-grained ones

• Techniques based on historical data are better than judgment

• Shared/compared estimates are better than individual ones

• Spend your time gaining knowledge, not on complex estimation games

Two Workers, One Day,
Per Controller Method

• Count up how many pages/controller in the design

• Estimate one day per controller method

• Estimate two workers to be involved in completing it

• Covers backend (DB/PHP/HTML) and frontend (HTML/JS/CSS)

• Graphic design is *not* generally covered; that’s a parallel task

• http://paul-m-jones.com/archives/1837

http://paul-m-jones.com/archives/1837

Objections

• “That means a CRUD controller takes 2 workers 4 days.”

• Look back at your own projects and count up the number of controller
methods, then divide by how long it actually took and how many people
were involved.

• If not 2 workers one day per controller, then close or worse.

• Warning: “This is for posterity, so, be honest.”

• Warning: Does not cover setup, deployment, maintenance, etc.

Part 4:
Managing Expectations

Whose Expectations?

• Your own expectations for yourself

• The client’s expectations for the project (McConnell, ch 23)

Guidelines

• Communicate early and often

• Estimate in the largest units possible

• Beware of ranges

• Estimate against coherent feature sets

• Be ready to re-estimate

• Maintain consistent pacing

Recovery Methods

• Cone of uncertainty

• Reduce features or extend deadline

• Schedule compression limits

Conclusion

• Everybody’s Story

• General Laws

• Planning and Estimating

• Managing Expectations

• http://paul-m-jones.com/

http://paul-m-jones.com

