
Decoupled Libraries for PHP

joind.in/10510

paul-m-jones.com
@pmjones

https://joind.in/10510
http://paul-m-jones.com

Read These

About Me
• 8 years USAF Intelligence

• Programming since 1983,  
PHP since 1999

• Developer, Senior Developer,  
Team Lead, Architect, VP Engineering

• Aura project, benchmarking series,
Zend_DB, Zend_View

• ZCE Advisory Board, PHP-FIG,
PSR-1, PSR-2, PSR-4 (php-fig.org)

http://php-fig.org

Overview

• Background: Libraries, Frameworks, Components

• Principles of decoupled library packages

• Examples: individual Aura library packages

• Limits to decoupling, direction of dependencies

Background: Libraries, Frameworks,
Components (oh my)

Frameworks: Bad!

• PHP 3, PHP 4, and early PHP 5: “framework” a bad word 
(“content management system” was ok)

• Libraries and collections: phpLib, Horde, PEAR, PhpClasses, FreshMeat

• Not unified in operation: different constructor signatures, different
method verbiage, different usage idioms, tough to combine

• Started Solar (solarphp.com) in late 2004 as a library collection  
(first of the PHP 5 E_STRICT collections)

Frameworks: Good! (Round 1)

• Ruby on Rails (2004/5): “framework” suddenly acceptable

• Agavi, Cake, CodeIgniter, ezComponents, Mojavi, PhpOnTrax, Symfony,
Zend Framework, many others

• Tapped into developer needs, including tribal belonging and plugins

Frameworks: Good! (Round 2)

• PHP 5.3 “full stack”: Lithium, Symfony 2, Zend Framework 2, others

• Micro-frameworks: Glue, Limonade, Silex, Slim

• Context, router+dispatcher, HTTP request/response, middleware

Frameworks: Good?

• Delivered as a monolithic whole

• Want to use just part of a framework? Difficult.

• Download entire framework and try to use one part ...

• ... except it’s coupled to dependencies within the framework.

• Have to set up parts you don’t care about.

• Components (kind of): Symfony 2, Zend Framework 2

Definitions of “Decoupled”

• In formal design, decoupling means to make the features of a formal system as
independent as possible from each other. — Ioannis T. Kassios, http://
link.springer.com/chapter/10.1007/11526841_5

• Decoupling refers to careful controls that separate code modules from particular
use cases, which increases code re-usability. — https://en.wikipedia.org/wiki/
Object-oriented_programming#Decoupling

• Cf. http://www.coldewey.com/publikationen/Decoupling.1.1.PDF

• Framework-level and package-level decoupling, not class-level

http://link.springer.com/chapter/10.1007/11526841_5
http://link.springer.com/chapter/10.1007/11526841_5
https://en.wikipedia.org/wiki/Object-oriented_programming#Decoupling
https://en.wikipedia.org/wiki/Object-oriented_programming#Decoupling
http://www.coldewey.com/publikationen/Decoupling.1.1.PDF

Zend Framework 2
install:
 zend-inputfilter

depends:
 zend-stdlib
 zend-servicemanager
 zend-filter
 zend-i18n
 zend-validator

suggest:
 pecl-weakref
 zendframework/zend-di
 zendframework/zend-crypt
 zendframework/zend-db
 zendframework/zend-math

Symfony 2

• Symfony Components implement common features needed to develop websites.
They are the foundation of the Symfony full-stack framework, but they can also
be used standalone even if you don't use the framework as they don't have any
mandatory dependencies. — http://symfony.com/components

• Symfony’s claim … is clearly true for 11 of those packages … clearly
false for 4 of them … debatable for the remaining 6 …  
— http://paul-m-jones.com/archives/4263

http://symfony.com/components
http://paul-m-jones.com/archives/4263

How To Tell
• Composer.json has “require” for another package? Not decoupled.

• Composer.json has “require-dev”? Might or might not be decoupled.
(Allowance for interface packages.)

• “Optional behavior”? Still coupled. Could say the same for framework.

/** Symfony/Component/Routing/Loader/AnnotationClassLoader.php */ 
namespace Symfony\Component\Routing\Loader; 
 
use Doctrine\Common\Annotations\Reader; 
use Symfony\Component\Config\Resource\FileResource; 
use Symfony\Component\Routing\Route; 
use Symfony\Component\Routing\RouteCollection; 
use Symfony\Component\Config\Loader\LoaderInterface; 
use Symfony\Component\Config\Loader\LoaderResolverInterface;

Decoupled Components?

• Not dependent on framework but still dependent on each other

• Ed Finkler, “The Micro-PHP Manifesto” (microphp.org)

http://microphp.org

Principles of Decoupled Packages

Rewrite Solar as Aura

• Solar Framework: 5+ years old at the time (Oct 2010)

• Monolithic; tough to use just parts of it

• Independent, decoupled library packages

• V1 (Oct 2010): extract components, PSR-0

• V2 (Sep 2013): split packages even further, PSR-4

Driving Principles (1)

• Libraries first, framework later

• No use of globals within packages (e.g., pass in $_SERVER)

• No dependencies on any other package

• Tests and assets encapsulated within package

• No “composer install" to run tests or get extra/optional functionality

• Each has its own repository (no subtree splits or extract-and-build)

Library Package Organization

Driving Principles (2):  
Dependency Injection

• Solar used static Service Locator and universal constructor

• In Aura, a shared Service Locator would mean a package dependency

• All packages are set up for dependency injection

• You can use any container you like (Aura.Di is nice ;-) or none

• Pass Factory objects instead of using new (reveals dependencies)

new Example
class Foo 
{  
 protected $db;  
 public function __construct() 
 { 
 $this->db = new Database(...);  
 } 
}  

Service Locator Examples
class Foo 
{  
 protected $db;  
 public function __construct() 
 { 
 $this->db = Locator::get('db');  
 } 
}  

class Foo 
{  
 protected $db;  
 public function __construct(Locator $locator)  
 { 
 $this->db = $locator->get('db');  
 } 
}  

Dependency Injection Examples
class Foo 
{  
 protected $db;  
 public function __construct(Database $db)  
 { 
 $this->db = $db;  
 } 
}  

class Foo 
{  
 protected $db;  
 public function setDb(Database $db)  
 { 
 $this->db = $db;  
 } 
}  

How To Tell Dependency Injection  
from Service Locator

• Both build and retain service objects: usage, not implementation

• Any DI container instance can be injected into an object

• Any SL container instance can be kept outside an object

• Providing static methods on Container: Service Locator

• implements ContainerAware: Service Locator

• Container parameter typehint: Service Locator

Dependency Injection > Service Locator
• Service Locator hides dependencies

• Service Locator is itself a dependency (all libraries need it)

• Harder to write tests for objects using the Service Locator

• DI reveals dependencies (especially with Factories)

• Is not itself a dependency

• Easier to write tests, fakes, etc.

• Service Locator instance, if needed, on a per-package basis

Aura.Router v2

Description

Provides a web router
implementation: given a URL path

and a copy of $_SERVER, it will
extract path-info parameters and

$_SERVER values for a specific route.

Instantiation

require '/path/to/Aura.Router/autoload.php';  
 
use Aura\Router\RouterFactory; 
$router_factory = new RouterFactory;  
$router = $router_factory->newInstance(); 
 
use Aura\Router\Router; 
use Aura\Router\RouteCollection; 
use Aura\Router\RouteFactory; 
$router = new Router(new RouteCollection(new RouteFactory));

Adding Routes
// add an unnamed route with params 
$router->add(null, '/{controller}/{action}/{id}'); 
 
// add a named route with optional params 
$router->add('archive', '/archive{/year,month,day}'); 
 
// add a named route with an extended specification 
$router->add('read', '/blog/read/{id}{format}')  
 ->addTokens(array( 
 'id' => '\d+',  
 'format' => '(\.[^/]+)?',  
)) 
 ->addValues(array( 
 'controller' => 'blog',  
 'action' => 'read',  
 'format' => '.html',  
)); 
 
// add a REST route: BREAD+CUR 
$router->attachResource('users', '/users');  

Matching Routes
// get the incoming request URI path 
$path = parse_url($_SERVER['REQUEST_URI'], PHP_URL_PATH); 
 
// get the route based on the path and server 
$route = $router->match($path, $_SERVER); 

The match() method does not parse the URI or use
$_SERVER internally. This is because different

systems may have different ways of representing
that information; e.g., through a URI object or a

context object. As long as you can pass the string
path and a server array, you can use Aura.Router

in your application foundation or framework.

Route Parameters
$route = $router->match('/blog/read/42.json', $_SERVER); 
var_export($route->params);  
 
// shows these values: 
[ 
 'controller' => 'blog',  
 'action' => 'read',  
 'id' => '42',  
 'format' => '.json',  
]  

Dispatching Routes

$params = $route->params;  
$class = ucfirst($params['controller']) . 'Page';  
$method = $params['action'] . 'Action';  
$object = new $class(); 
echo $object->$method($params);  

Micro-Framework Route
$router->add('read', '/blog/read/{id}') 
 ->addTokens(array( 
 'id' => '\d+', 
)) 
 ->addValues(array( 
 'controller' => function ($params) { 
 $id = (int) $params['id']; 
 header('Content-Type: application/json'); 
 echo json_encode(['id' => $id]); 
 }, 
)); 

Micro-Framework Dispatcher

$controller = $route->params['controller'];  
echo $controller($route->params); 

Aura.Web (v1 to v2)

Old (v1) Description

Provides tools to build web page controllers,
including an `AbstractPage` for action

methods, a `Context` class for discovering the
request environment, and a `Response`

transfer object that describes the eventual
HTTP response.

Instantiation and Calling
use Vendor\Package\Web\Page; 
use Aura\Web\Context; 
use Aura\Web\Accept; 
use Aura\Web\Response; 
use Aura\Web\Signal; 
use Aura\Web\Renderer\None as Renderer; 
 
$params = [ 
 'action' => 'hello',  
 'format' => '.html',  
 'noun' => 'world',  
];  
 
$page = new Page( 
 new Context($GLOBALS), 
 new Accept($_SERVER),  
 new Response,  
 new Signal,  
 new Renderer,  
 $params 
);  
 
$response = $page->exec(); 

Important Parts
• $this->params for incoming parameters

• $this->context for get, post, files, etc.

• $this->accept for content-type, language, encoding, etc

• $this->response for headers, cookies, content (data transfer object)

• $this->signal for signals/events/notifiers (separated interface)

• $this->renderer for rendering strategy (default “none”)

• $this->data for data to be rendered

• (pre|post)_(exec|action|render) hooks, and catch_exception hook

Rendering Strategy
class NaiveRenderer extends AbstractRenderer 
{  
 public function exec()  
 { 
 // get data from controller 
 $data = (array) $this->controller->getData(); 
 
 // pick a template file based on controller action 
 $action = $this->controller->getAction(); 
 $__file__ = "/path/to/templates/{$action}.php";  
  
 // closure to execute template file 
 $template = function () use (array $data, $__file__) { 
 ob_start(); 
 extract($data); 
 require $__file__;  
 return ob_get_clean(); 
 }; 
  
 // invoke closure 
 $content = $template(); 
  
 // set content on response, and done! 
 $response = $this->controller->getResponse(); 
 $response->setContent($content);  
 } 
}  

Way Too Much In v1

• At first, all seemed to go together: base controller, page controller, action
method dispatch, event signals, request, response, rendering

• Even with separated interfaces, all coupled to each other

• Extract Aura.Dispatcher from Aura.Web, Aura.Cli, front-controller

• No more need for “controller” or “rendering” code

• All that remains is request and response for your own controllers

New (v2) Description

Provides web Request and Response objects
for use by web controllers. These are

representations of the PHP web
environment, not HTTP request and

response objects proper.

Request Object

• Not an HTTP request, but a web execution context representation

• If you have $_SESSION or $_ENV in your request object, it’s not HTTP

• Read superglobals, headers, cookies, negotiate accept values, etc.

• Read/write on “params”

Response Object

• Not an HTTP response, but a Data Transfer Object

• Must convert it to a real HTTP response (does not “send itself”)

• Allows any HTTP library, or none

// typical full-stack controller, dependency injection 
class MyAppController 
{  
 public function __construct( 
 Request $request,  
 Response $response 
) { 
 $this->request = $request;  
 $this->response = $response;  
 } 
  
 public function foo()  
 { 
 $bar = $this->request->post->get('bar');  
 $this->response->content->setType('application/json'); 
 } 
}  
 
// typical micro-framework route+dispatch+logic, service locator 
$app->addGet('/foo', function () use ($app) { 
 $bar = $app->request->post->get('bar'); 
 $app->response->content->setType('application/json');  
}); 

Delivery Code
// send status line 
header($response->status->get(), true, $response->status->getCode()); 
 
// send non-cookie headers 
foreach ($response->headers->get() as $label => $value) { 
 header("{$label}: {$value}"); 
}  
 
// send cookies 
foreach ($response->cookies->get() as $name => $cookie) { 
 setcookie( 
 $name,  
 $cookie['value'],  
 $cookie['expire'], 
 $cookie['path'], 
 $cookie['domain'], 
 $cookie['secure'], 
 $cookie['httponly']  
); 
}  
 
// send content 
echo $response->content->get(); 

Limits To Decoupling

Library Packages
•Aura.Autoload
•Aura.Cli
•Aura.Di
•Aura.Dispatcher
•Aura.Filter

•Aura.Html
•Aura.Http

•Aura.Includer
•Aura.Input

•Aura.Intl

•Aura.Marshal

•Aura.Router
•Aura.Session

•Aura.Signal

•Aura.Sql
•Aura.Sql_Query
•Aura.Sql_Schema
•Aura.Uri

•Aura.View
•Aura.Web

Combinations Mean Dependencies

• Front controller will need router, dispatcher, responder

• Action controller will need services, request/response

• Gateway services will need data source connection

Clean Code (Robert C. Martin)

*_Kernel, *_Project

• “Kernel” of packages and glue

• “Project” (framework) skeleton

• composer create-project

Watch For Dependency/Coupling

• Controller should probably be independent of routing, dispatching,
external base class (and vice versa)

• Service Locators are especially binding

• Micro-frameworks are antithesis of decoupling: closure is bound to
routing, dispatching, locator (and probably middleware system)

Conclusion

• Background: Libraries, Frameworks, Components

• Principles of decoupled library packages

• Examples: individual Aura library packages

• Limits to decoupling, direction of dependencies

Modernizing Legacy Applications in PHP
Are you overwhelmed by a legacy application full of page scripts,

spaghetti includes, and global variables? Do you want to improve the
quality of the code, but don’t know where to begin or how to proceed?

My new book, Modernizing Legacy Applications in PHP, gives step-by-
step instructions on how to get your code under control and keep

your application running the whole time.

http://mlaphp.com

Buy the early access version now and get free updates as it is
completed, or sign up on the mailing list below for more information

and a free sample chapter.

http://mlaphp.com

Thanks!

auraphp.com

paul-m-jones.com
@pmjones

mlaphp.com

joind.in/10510

http://auraphp.github.com
http://paul-m-jones.com
http://mlaphp.com
https://joind.in/10510

